

Native Fish in Braided Rivers

Sophie Allen, Projects Manager

Working Waters Trust

- Charitable Trust established in 2013 by freshwater ecologists and a resource planner
- Projects in Canterbury, Otago and Southland
- Restoration projects, education and advocacy
- Partner with locals for on-the-ground conservation wins for threatened fish
- Ngā manaaki ki ngā wāhi waimāori katoa

Introducing..... 'The Braidy Bunch'

- Torrentfish 'Mr. Riffle'
- Longfin eel 'Mrs. Big'
- Alpine galaxias 'Little Pencil'
- Lowland Longjaw Galaxias 'Master Burrower'
- Canterbury galaxias 'Ms. Confusing' with a species complex
- Bluegill bully 'Baby Blue'

.....and more

Torrentfish (Cheimarrichthys fosteri)

- Prefers riffles (strong flowing broken water)
- Larvae are washed to sea.
 Juveniles return upstream in spring

Photo credit: Stephen Moore

- Closely related to Blue Cod
- Strong pelvic fins and flatten form
 help the fish to stay pinned to the riverbed

'At Risk – Declining' (Goodman et al. 2014)

Tuna – longfin eel (Anguilla dieffenbachii)

- Females can grow up to 2m and live up to 80+ years
- large size now very rare
- Need to migrate to sea to spawn at the end of their life
- Very important mahinga kai species
- Fished commercially

Art credit: Lemurkat

'At Risk – Declining' (Goodman et al. 2014)

Alpine Galaxias (G. paucispondylus)

- From the galaxiid family our largest freshwater family
- 'Pencil' galaxias shape helps them burrow deep and avoid extreme changes in flow
- Often greyish colour due to 'glacial flour' camouflage
- Stable springs are better habitat than braided riffles

'At Risk – Naturally uncommon' (Goodman et al 2014)

Photo credit: Bob McDowall

Lowland Longjaw Galaxias

(G. cobitinis)

- Only a few sites Kauru River, and upper Waitaki.
- Also a 'pencil' galaxias shape helps them burrow deep during low flows and floods
- Was an intended Working Waters Trust translocation project with DOC
- Stable springs are better habitat than braided riffles

Art credit: DOC

'Nationally Critical'

(Goodman et al 2014)

Canterbury Galaxias (G. vulgaris)

- Galaxias vulgaris 'species complex' is complex!
 There are a handful of un-described species However in Canterbury it's mostly G. vulgaris Stokell
- Non-migratory (not whitebait)
- Easily confused with Koaro

Source: NZFFD

Photo Credit: Rod Morris

'At-Risk – Declining' (Goodman et al. 2014)

Bluegill Bully (Gobiomorphus hubbsi)

- Beautiful distinctive blue gill cover
- Tiny size adults commonly only up to 70mm
- Migratory larvae carried out to sea

Plus many more species..... such as Bignose Galaxias, Koaro, Upland bully

Photo credit: Angus McIntosh

'At-Risk – Declining' (Goodman et al. 2014)

Along came Europeans...

A very short history of what happened next

Story of Braided River X

- Brown Trout were introduced, followed by salmon in the 19th century.
 They adapted quickly to a diet of native fish and invertebrates.
- The bed of the river has been greatly constricted from spreading out by flood protection works and stopbanks
- Farming and urbanisation upstream has increased the level of nutrients and environmental pollutants
- In the 1960's hydropower stations were build in the lower reaches without any allowance for fish passage. This regulated flows, created lakes and removed fast-flowing habitat
- Water is abstracted for irrigation
- Gravel is extracted regularly
- Didymo was accidentally introduced and blooms regularly

Devastating effect of salmonids

- Galaxiid family particularly susceptible. Large trout (150mm
 +) will eat adult galaxiids- McIntosh 2010
- Salmonids also eat galaxiid larvae, creating population 'sinks' where recruitment from outside the area is required to sustain a population.
- Brown trout have caused local extinctions of Galaxias species. Galaxiid populations have been retained above trout barriers like waterfalls. Some artificial barriers now in place- but need many more.
- Life history is a strong factor whether Galaxiid species can cohabit the waterway with salmonids. E.g. Canterbury galaxias can co-occur with salmonids due to their 'fast' life-history traits (e.g. high fecundity, small eggs) Jones and Closs 2015

Not just predation, but also competition for invertebrate food.

McDowall 2003

Damming

- Many of our native fish need to migrate to sea for their lifecycle to complete – so damming removes upstream habitat
- Not all dams have fish passage requirements as part of their resource consents (e.g. trap and transfer programmes or fish passes on the dam)
- Often leads to altered flows

Caution with modifying existing small dams and weirs in headwaters – might be protecting non-migratory galaxiid species

Abstraction & Regulated flows

- No 'One-Flow-Fits-All' for native fish some prefer lower levels, some higher. Jowett and Richardson 1998
- Floods: Lower biomass of large trout in high bed disturbance areas of upper Waimakariri (i.e. with more flooding). Hypothesis of less predation and competition for galaxiids. McIntosh 2000
- Low flows: Restrict habitat, high temperatures, low oxygenbut may also benefit galaxiid species: Brown trout were prevented from eliminating galaxiid populations from sites in a low gradient part of the Manuherikia River where there is a high level of water abstraction. Leprieur et al. 2006

Flood control works

- Works constrict and channelise the main active stem.
 Cuts off a river from its floodplain usually less habitat heterogeneity (e.g. side braids, wetlands and springs.)
- →less refuge for native fish from salmonids
- But flood control works can also create important upwelling and spring streams (e.g. lower Selwyn River)

Graphic source; NIWA

Farming, industry....declining water quality

- Increase in nitrate leaching from farming. Some nitrate toxicity effects on native fish in braided rivers (particularly for the invertebrates they eat), but worse for lowland streams and springs.
- Environmental pollutants e.g. heavy metals, PCBs less in braided rivers than in lowland lagoons, estuaries etc. Native fish not affected significantly in braided rivers

Gravel Extraction

- Does destroy habitat and possibly spawning for native fish. Not as significant as for birds
- Lowland Longjaw galaxias shown to have restricted burrowing ability (to access drought refuges)- gravel extraction created less interstitial space as larger particles were removed. Dunn and O'Brien 2006

"Farmer, XX, said gravel build-up and erosion has been an issue for farmers on the river for the last five-seven years and the regional council has now come on board with what is hoped to be a 'common sense approach'.

Mr XX said some gravel consents have been issued to appropriate businesses.

Oamaru Mail, 2014

Kauru River (North Otago)

Didymo

 GIS modelling predicted negative effects for benthic non-migratory species with limited distribution (e.g. longjaw galaxiids). Due to predicted decrease in invertebrate food source.

HOWEVER Small sample on the Oreti River found more galaxiids where there was a moderate Didymo bloom. Larned et. al. 2007

Source: Otago Daily Times

The near future: Climate Change as a stressor

- Climate change will effect flow regimes, bed disturbance, water temperature— but very complex interactions. What will happen to our native fish?
- Native fish are quite resilient to floods, low flows and temperature changes

But what will be the effect on the fish's invertebrate

food species?

Protecting our 'Braidy Bunch'

- Improve legislation e.g. for Water Conservation Orders make them easier to get and harder to remove. Give threat status classifications some legal backing
- Better management of freshwater fisheries (MPI for eels, DOC for whitebait)
- Managing irrigation takes, maintaining ecological flows, gravel extraction restrictions in some circumstances
- Biosecurity- best method is to prevent introductions of fish, algae or invertebrates. Clean Check Dry!
- Installation of trout barriers in braided river headwaters e..g the planned barrier at Corbies Creek (Upper Waitaki) for Lowland Longjaw galaxias.
- Submit on Plan Changes to Land and Water Regional Plan
- MfE's National Policy Statement for Freshwater Management (under review in 2016) –Could have a fish indicator as a measure of waterway health, but would be expensive to implement

Or donate to charities such as BRaid and Working Waters Trust to advocate on your behalf

Selected references

- Dunn, N.R O'Brien L.K. 2006. Gravel burrowing ability in Galaxias cobitinis. DOC Research & Development series 236
- Goodman, J.M.; Dunn, N.R.; Ravenscroft, P.J.; Allibone, R.M.; Boubee, J.A.T.; David, B.O.; Griffiths, M.; Ling, N.; Hitchmough, R.A.; Rolfe, J.R. 2014: New Zealand Threat Classification Series 7. Department of Conservation, Wellington. 12 p.
- Jones, P. E. and Closs, G. P. (2015), Life history influences the vulnerability of New Zealand galaxiids to invasive salmonids. Freshw Biol, 60: 2127–2141
- Jowett I. G. & Richardson J. (1995) Habitat preferences of common, riverine New Zealand native fishes and implications for flow management, New Zealand Journal of Marine and Freshwater Research, 29:1, 13-23, DOI: 10.1080/00288330.1995.9516635
- Larned S. et. al. 2007. Ecological studies of *Didymosphenia geminata* in New Zealand, 2006-2007. NIWA Client Report: CHC2007-070 for MAF Biosecurity New Zealand
- Leprieur, F. Hickey, M. A Arbuckle, C. J. Closs G. P., Brosse S. and Townsend C. R. Hydrological Disturbance Benefits a Native Fish at the Expense of an Exotic Fish. *Journal of Applied Ecology* Vol. 43, No. 5 (Oct., 2006), pp. 930-939
- McIntosh, A R. Habitat- and size-related variations in exotic trout impacts on native galaxiid fishes in New Zealand streams. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57(10): 2140-2151, 10.1139/f00-188
- Report on Hydroelectric Dams in New Zealand and Fish Passage. Report Prepared for Wai Maori Trustee Limited By LMK Consulting Ltd 10 October 2014

Young, R.; Smart, G.; Harding, J.S. 2004: Impacts of hydro-dams, irrigation schemes and river control works. Chapter 37 in Harding, J.S.; Mosley, P.; Pearson, C.; Sorrell, B. (Eds): Freshwaters of New Zealand. New Zealand Hydrological Society and New Zealand Limnological Society, Christchurch.

