Introduced mammalian predators on braided river islands: results and recommendations

Georgina Pickerell

gapickerell@gmail.com

Supervisors: Phil Seddon & Deb Wilson

Te Whare Wánane a o Otãe

Landcare Research anaaki Whenua

Predator distribution on braided-river islands

Pascoe (1995) Unpubl MSc Thesis, Otago Pierce (1987) Unpubl DOC report, Twizel

Aims

If islands are refuges:
 ↓ Mammalian predator presence;
 Species differences?

- Relative importance of factors determining predator presence on islands
 Which islands (i) are relatively safe; (ii) may need management (and which species to target)
- 3. Effect of reducing island isolation on predator presence

Predator distribution: ML versus island

Please contact the presenter for details of this image

Cat Mouse N. rat nedgehog Mustelid possum

Predator presence less likely on islands
 Predators found on 64% of study islands

Mainland versus island II

• Fewer predator species detected on islands

Conclusions

1. Islands can act as refuges Reduces but does not prevent predator access

- Species specific differences
 Norway rats not deterred by water as much as other species (exception: stoats)
- 3. Stoats (and rats) difficult to detect and therefore monitor
- 4. Norway rat distribution temporally and spatially patchy

Predator presence risk models

- Response Variable:
 - Presence/absence mammalian predator (18 nights)
- Explanatory Variables:
 - Island size
 - 'Bare' or 'vegetated'
 - Lagomorphs 'rare' or 'common'
 - Minimum distance to mainland
 - Total discharge \geq a threshold m³/sec (< 10 m³/sec)
- IT approach (AIC_c)
 - Effect size and Relative Variable Importance (RVI)

Relative Variable Importance (top 3 in model)

'Any predator'			<u>Cat</u>	
Island size	100%	+	Island size	97% +
Distance ML	67%	-	Distance ML	94% –
Vegetation >20cm	62%	+	Lagomorph	59% +

<u>Norway rat</u>		
Vegetation >0cm	100%	+
Discharge ≥ 7 m ³ /s	51%	_
Island size	45%	+

<u>Hedgehog*</u> Vegetation >20cm 100% +

Conclusions

- Species-specific differences
- Island size and distance larger predator species
 - Island VISITORS
 - Island isolation important
- Vegetation smaller predator species
 Island RESIDENTS
 - Island isolation less important

Effect of island size, isolation, vegetation & lagomorphs on 'any predator' presence

Veg & Lagomorph present; discharge < 6 m³/sec Veg & Lagomorph absent; discharge > 6 m³/sec

Please contact the presenter for details of these images

Island size (ha)

Effect of island size, isolation, vegetation & lagomorphs on cat presence

- Veg & Lagomorph present; discharge < 5 m³/sec
- Veg & Lagomorph absent; discharge > 5 m³/sec

Please contact the presenter for details of this image

Island size (ha)

Effect of island size, isolation and vegetation on Norway rat presence

- Veg present; discharge < 7 m³/sec
- Veg absent; discharge > 7 m³/sec

Please contact the presenter for details of this image

Island size (ha)

Further observations

Hedgehogs (13 detections)

- Vegetated islands only
- Isolation unimportant
- Larger islands?

Mustelids (7 detections)

- Ad male Ferrets only found < 3 m³/sec
- < 15 m from ML
- Largest islands
- Lagomorphs
- Only one definite stoat detection on island

Overall conclusions

- ↑ Island size, vegetation & lagomorph presence →
 ↑predator presence
- \uparrow Island isolation $\rightarrow \downarrow$ predator presence
- Vegetation on islands enables predators to be resident
 - isolation of vegetated islands less likely to provide protection from mammalian predators
 - reservoir
 - possible predator source for nearby 'safe' islands
- Rangitata: cats largest impact on bird populations – stoats?
- Expect similar patterns on other braided rivers

Recommendations I

- Veg & lago on islands → ↑preds (resident)
 Mainland trap lines only?
 - Vegetation and lagomorph removal from islands
 - (cats?)
 - Predator control on high-risk islands
 - > 2 ha; vegetated; < 20 m; < 6 cumecs
 - Cats: lagomorph sign

Especially important for small rivers where islands are unlikely to be > 20 m or > 6 m³/sec from the mainland.

Recommendations II

Island maintenance or creation:

- < 1 ha = fewest predators (but too small for successful breeding colonies?)
- \uparrow size = \uparrow predator risk
- 1–3.5 ha; bare; > 20 m; > 6 m³/sec
 - smaller rivers: 1–2.5 ha; bare
- assess impact on bird breeding success

Further studies

- Few data from islands w discharges > 7 m³/sec
- More isolated islands

 tended to be smaller and less vegetated
 Larger river with isolated large +/or vegetated islands
 Threshold that would prevent incursion?
- Test the applicability of these models for other rivers
 - quantify effects of lower flows
- Is bird breeding success related to island characteristics?

Thanks to

- Phil Seddon (Otago Uni)
- Deb Wilson (Landcare Research)
- Colin O'Donnell (DOC)
- Field helpers
- Rangitata landowners
- Accommodation providers
- DOC staff: esp. Geraldine, Twizel, Christchurch, Craig Gillies
- Otago University staff
- Malcolm Thomas, Pest Control Research Ltd

- Stats advice: esp. Catherine Grueber, Sheena Townsend, Alistair Senior, Mike Jones
- EcoGene Ltd
- ECan
- Ruth Goldsmith
- Funding: Otago University; DOC; JS Watson Trust